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We consider an electronic model for realizing the spin Bose-metal �SBM� phase on a two-leg triangular
strip—a spin liquid phase found by Sheng et al. �Phys. Rev. B 79, 205112 �2009�� in a spin-1/2 model with
ring exchanges. The SBM can be viewed as a “C1S2” Mott insulator of electrons where the overall charge
transporting mode is gapped out. We start from a two-band “C2S2” metal and consider extended repulsion
motivated by recent ab initio derivation of electronic model for �-ET spin liquid material �K. Nakamura et al.,
J. Phys. Soc. Jpn. 78, 083710 �2009��. Using weak coupling renormalization group analysis, we find that the
extended interactions allow much wider C2S2 metallic phase than in the Hubbard model with on-site repulsion
only. An eight-fermion umklapp term plays a crucial role in producing a Mott insulator but cannot be treated
in weak coupling. We use bosonization to extend the analysis to intermediate coupling and study phases
obtained out of the C2S2 metal upon increasing overall repulsion strength, finding that the SBM phase is a
natural outcome for extended interactions.
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I. INTRODUCTION

There has been much recent interest in gapless spin liq-
uids stimulated by the appearance of several experimental
candidates, including two-dimensional �2D� triangular lattice
based organic compounds1–5 �-�ET�2Cu2�CN�3 and
EtMe3Sb�Pd�dmit�2�2 and three-dimensional �3D� hyperk-
agome material6 Na4Ir3O8. One line of theoretical ideas con-
siders states with a Fermi surface of fermionic spinons.7–10

For the 2D spin liquids, such a state arises as a good varia-
tional wave function7 for an appropriate spin model with ring
exchanges; it is also an appealing candidate for the Hubbard
model near the Mott transition.8,11,12 Theoretical description
of such states leads to a U�1� gauge theory �see Ref. 13 for a
review�.

Variational studies are not sufficient to prove that a given
state is realized and the gauge theory is not fully reliable in
2D. Driven by the need for a controlled theoretical access to
such phases, Ref. 14 considered the Heisenberg plus ring
exchanges model on a two-leg triangular strip �so-called zig-
zag chain�.15,16 Using numerical density matrix renormaliza-
tion group �DMRG�, variational Monte Carlo �VMC�, and
analytical bosonization treatment, Ref. 14 found a ladder de-
scendant of the 2D spin liquid in a broad range of parameters
and dubbed this phase “spin Bose metal” �SBM�. The name
refers to metal-like itinerancy present in the spin degrees of
freedom, while there is no electric transport to speak of in the
spin-only model, which is bosonic model microscopically.

A low-energy field theory14 for the zigzag SBM phase can
be obtained by employing bosonization to analyze the
spinon-gauge theory �the slave particle approach also under-
lies the VMC trial states�. An alternative derivation of the
SBM theory is to consider an interacting model of electrons
hopping on the zigzag chain and to drive a transition from a
two-band metal to a particular Mott insulator. Specifically, let
us start in the metallic phase with two gapless charge modes
and two gapless spin modes—so-called “C2S2” metal. We
can imagine gapping out just the overall charge mode to

obtain a “C1S2” Mott insulator with one gapless “charge”
mode and two gapless spin modes, where the former repre-
sents local current loop fluctuations and does not transport
charge along the chain. This is precisely the SBM phase. If
one thinks of a spin-only description of this Mott insulator,
the gapless charge mode can be interpreted as spin singlet
chirality mode. Ref. 14 also identified a valid umklapp term
that can drive the electron system to the C1S2 phase.

In this paper, we focus on realizing such scenario for the
SBM in explicit and realistic electronic models. Hubbard
model on the zigzag chain �t1− t2−U chain� has received
much attention.17–22 For free electrons, the two-band metal
appears for t2 / t1�0.5. However, in the case of Hubbard in-
teraction, weak coupling approach18,19 finds that this phase is
stable only over a narrow range t2 / t1� �0.5,0.57�, while a
spin gap opens up for larger t2 / t1. The umklapp that can
drive a transition to a Mott insulator requires eight fermions
and is strongly irrelevant at weak coupling. Prior work17,18,23

focused on the spin-gapped metal and eventual spin-gapped
insulator for strong interaction, while the C1S2 spin liquid
phase was not anticipated.

There have also been numerical DMRG studies of the
Hubbard model.19–22 The focus has been on the prominent
spin-gapped phases and, in particular, on the insulator that is
continuously connected to the dimerized phase in the J1−J2
Heisenberg model, which is appropriate in the strong inter-
action limit U� t1 , t2. The C2S2 metallic phase and possibil-
ity of nearby spin liquid on the Mott insulator side in the
Hubbard model have not been explored. We hope our work
will motivate more studies of this interesting possibility in
the Hubbard model with intermediate U close to the C2S2
metal.

Since the C2S2 metallic phase is quite narrow in the Hub-
bard model, we would like to first widen the C2S2 region. To
this end, we explore an electronic model with extended re-
pulsive interactions.24 Such interactions tend to suppress in-
stabilities in the electronic system, similar to how long-
ranged Coulomb repulsion suppresses pairing in metals.
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They are also more realistic than the on-site Hubbard, par-
ticularly for materials undergoing a metal-insulator transition
where there is no conduction band screening on the insulator
side. Thus, recent ab initio model construction for the
�-�ET�2Cu2�CN�3 material found significant extended inter-
actions in the corresponding electronic model on the half-
filled triangular lattice.25,26

Applying weak coupling renormalization group �RG� ap-
proach to the zigzag ladder system,17,18,23,27 we indeed find
that extended interactions open a much wider window of the
C2S2 metal phase. Building on this, we then use bosoniza-
tion approach to explore a transition to a Mott insulator upon
increasing the overall repulsion strength. We find that such
longer-ranged interactions can drive the system into the
C1S2 spin liquid Mott insulator rather than a spin-gapped
insulator. This bodes well for finding spin liquid phases in
more realistic electronic models for materials near the metal-
insulator transition.

The paper is organized as follows. In Sec. II, we set up the
weak coupling RG �Refs. 18, 23, and 27� and open a much
wider window of the metallic C2S2 phase by introducing
realistically motivated longer-ranged repulsion. In Sec. III,
we use bosonization to extend the analysis to intermediate
coupling. We gradually increase the overall repulsion
strength and determine thresholds for a Mott transition
driven by the eight-fermion umklapp term and also for spin
gap instabilities, thus mapping out phases neighboring the
C2S2 metal. In Sec. IV, we summarize our results and con-
clude with some discussion.

II. WEAK COUPLING ANALYSIS OF t1− t2 MODEL
WITH EXTENDED REPULSION:

STABILIZING C2S2 METAL

A. Setup for two-band electron system

We consider half-filled electronic t1− t2 model with ex-
tended interaction described by the Hamiltonian H=H0+HV,
with

H0 = − �
x,�

�t1c�
†�x�c��x + 1� + t2c�

†�x�c��x + 2� + H.c.� ,

�1�

HV =
1

2 �
x,x�

V�x − x��n�x�n�x�� . �2�

Here c�c†� is fermion annihilation �creation� operator, x is a
site label on the one-dimensional �1D� chain, and �= ↑ ,↓ is
a spin index; n�x����c�

†�x�c��x� is electron number on the
site.

In weak coupling, the kinetic energy Eq. �1� gives free
particle dispersion

��k� = − 2t1 cos�k� − 2t2 cos�2k� . �3�

For t2 / t1�0.5, there are two sets of Fermi points at
wavevectors �kF1 and �kF2 as shown in Fig. 1. We adopt
the same conventions as in Ref. 14. Fermions near kF1 and
kF2 are moving to the right, and the corresponding group

velocities are v1 ,v2�0. Electrons are at half-filling, which
implies kF1+kF2=−� /2 mod 2� for the choices as in Fig. 1.

The electron operators are expanded in terms of con-
tinuum fields,

c��x� = �
P,a

eiPkFaxcPa�, �4�

with P=R /L=+ /− denoting the right and left movers and
a=1,2 denoting the two Fermi seas.

Four-fermion interactions can be conveniently expressed
in terms of chiral currents,14,23,27

JPab = �
�

cPa�
† cPb�, �5�

J�Pab = �
�,�

cPa�
† 	� ��

2
cPb�. �6�

Most general four-fermion interactions can be written as

HRL

 = �

a,b
�wab


 JRabJLab + �ab

 JRaaJLbb� , �7�

HRL
	 = − �

a,b
�wab

	 J�Rab · J�Lab + �ab
	 J�Raa · J�Lbb� , �8�

Hchiral

 =

1

2�
a

Caa

 �JRaaJRaa + JLaaJLaa�

+ C12

 �JR11JR22 + JL11JL22� , �9�

Hchiral
	 = −

1

2�
a

Caa
	 �J�Raa · J�Raa + J�Laa · J�Laa�

− C12
	 �J�R11 · J�R22 + J�L11 · J�L22� . �10�

Here HRL are terms that connect right and left movers, while
Hchiral are chiral terms with all fermions moving in the same
direction.

Consider the couplings in HRL. We have w11=w22=0
�convention�, w12=w21 �from Hermiticity�, and �12=�21
�from R↔L symmetry�. Thus there are 8 independent cou-
plings: w12


/	, �11

/	, �22


/	, and �12

/	. Note that there are no four-

-5
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-2

-1
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1

2
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-2 t1 cos(k) - 2 t2 cos(2k) - µ

FIG. 1. �Color online� Electron band for t2�0.5t1 has two oc-
cupied Fermi sea segments. This is free fermion C2S2 metal.
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fermion umklapp terms in our two-band system.
In the specific lattice model, we expand the interactions

�Eq. �2�� in terms of the continuum fields and find “bare”
values of the couplings,

�11

 = VQ=0 −

V2kF1

2
, �11�

�22

 = VQ=0 −

V2kF2

2
, �12�

�12

 = VQ=0 −

V�/2

2
, �13�

�11
	 = 2V2kF1

, �14�

�22
	 = 2V2kF2

, �15�

�12
	 = 2V�/2, �16�

w12

 = VkF1−kF2

−
V�/2

2
, �17�

w12
	 = 2V�/2, �18�

C11

 = C22


 = VQ=0 −
U

2
, �19�

C12

 = VQ=0 −

VkF1−kF2

2
, �20�

C11
	 = C22

	 = 2U , �21�

C12
	 = 2VkF1−kF2

. �22�

Here VQ��x�=−�
� V�x−x��eiQ�x−x��=V−Q since V�x−x��

=V�x�−x�. We have also used explicitly kF1+kF2=−� /2.
The terms Hchiral renormalize “velocities” of various

modes. In the weak coupling RG analysis, they only generate
higher-order contributions and are therefore not important.
The RG equations below contain only couplings from HRL.
On the other hand, the chiral interactions are important in the
intermediate coupling analysis to be done in Sec. III, which
is why we have listed their values as well. The on-site cou-
pling U�V�x−x�=0� appears explicitly in C11


/	 and C22

/	 be-

cause of our more careful treatment of the on-site interaction,
which we first write as Un↑�x�n↓�x� and then insert the con-
tinuum fields �and bosonize in Sec. III�.

B. Weak coupling renormalization group

The RG equations in the two-band system are18,23,27

�̇11

 = −

1

2�v2
��w12


 �2 +
3

16
�w12

	 �2� , �23�

�̇22

 = −

1

2�v1
��w12


 �2 +
3

16
�w12

	 �2� , �24�

�̇12

 =

1

��v1 + v2���w12

 �2 +

3

16
�w12

	 �2� , �25�

�̇11
	 = −

1

2�v1
��11

	 �2 −
1

4�v2
��w12

	 �2 + 4w12

 w12

	 � , �26�

�̇22
	 = −

1

2�v2
��22

	 �2 −
1

4�v1
��w12

	 �2 + 4w12

 w12

	 � , �27�

�̇12
	 = −

1

��v1 + v2�	��12
	 �2 +

�w12
	 �2 − 4w12


 w12
	

2

 , �28�

ẇ12

 = − 

w12


 −
3

16

	w12

	 , �29�

ẇ12
	 = − 
	w12


 − �

 +

	

2
+

2�12
	

��v1 + v2�
�w12

	 . �30�

Here Ȯ��O /��, where � is logarithm of the length scale.
We have also defined



/	 =
�11


/	

2�v1
+

�22

/	

2�v2
−

2�12

/	

��v1 + v2�
. �31�

Details of our system enter through the band velocities v1,
v2, and the initial conditions �Eqs. �11�–�18��.

C. Fixed point for stable C2S2 phase

We are primarily interested in the stability of the two-
band metallic phase with two gapless charge and two gapless
spin modes—C2S2 in the notation of Ref. 23. In the RG, this
phase is characterized as having no divergent couplings. Be-
fore proceeding with detailed numerical studies of the flow
Eqs. �23�–�30�, we can describe such stable C2S2 fixed point
qualitatively: the charge sector couplings reach some fixed
values, �11


�, �22

�, and �12


�, and are strictly marginal; they also
need to satisfy 

��0 �see below�. The spin sector cou-
plings approach zero from positive values, �11

	�=�22
	�=�12

	�

=0+, and are marginally irrelevant. Finally, the “charge-spin”
couplings w12 go to zero, w12


�=w12
	�=0, and are irrelevant,

which is ensured by the condition 

��0. Indeed, consider
small deviations of comparable magnitudes for all couplings
and allowing only positive �ab

	 . Since we have finite 

�

�0, first the w12

/	 will renormalize quickly to zero, without

affecting significantly the other couplings. Then the �ab
	 will

renormalize to zero via slow marginal flows.

D. Numerical studies of the flows

We can solve the RG equations numerically for given
initial conditions and check whether the couplings flow into
the domain of attraction of the C2S2 fixed point or not. We
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use Mathematica to solve the flows up to long “time” � when
the ultimate trends become apparent.

If the couplings always remain of the same order as their
initial values or approach zero, we say the couplings are
marginal or irrelevant and identify this as the C2S2 phase.
The eventual trends here were discussed in Sec. II C

On the other hand, if the magnitudes of some couplings
grow significantly compared to the initial values, we say that
the couplings are relevant and the C2S2 phase is destroyed.
Thus, if either �11

	 or �22
	 coupling becomes negative while

w12
	 and w12


 remain of the same sign, this �	 then runs away
to large negative values and also induces the other couplings
to diverge. Bosonizing the four-fermion interactions14,23,27

�cf. Sec. III�, we can see that two spin modes and one charge
mode become gapped and we obtain so-called “C1S0” phase.
The overall charge propagation mode remains gapless and
the system is conducting. Note that we do not distinguish
which coupling diverges faster in the formal flow �Eqs.
�23�–�30��. As discussed in Ref. 23, in the U→0+ limit one
can separate a so-called C2S1 case where one of the spin
couplings diverges qualitatively faster �but all couplings still
diverge at the same ��. We do not make such subtle distinc-
tion and call any runaway flow situation as C1S0—all we
want to know is that the two-band metal C2S2 became un-
stable.

The RG flows are qualitatively similar for different points
in the same phase, so we only show one representative pic-
ture for each case. Figure 2 shows the flows in the C2S2
phase. The scale parameter � is the x axis, while logarithm of
the couplings is the y axis. In this way, we clearly see that
the couplings separate into three groups, which is well ex-
plained by the C2S2 fixed point in Sec. II C: the w12


/	 flow to
0 exponentially rapidly, the �ab

	 flow to 0 marginally slowly,
while the �ab


 saturate.
Figure 3 illustrates the flows in the C1S0 phase. Here we

use real values of the coupling as the y axis and only show
selected couplings, �11

	 , �22
	 , w12


 , and w12
	 . We clearly see that

these couplings diverge �and so do the other couplings not
shown in the figure�.

E. Examples of phase diagrams with C2S2 metal
stabilized by extended interactions

For illustration in our paper, we consider the following
interaction potential,

V�x − x�� = 	 U , 
x − x�
 = 0

�Ue−�
x−x�
, 
x − x�
 � 1
 . �32�

Here U is the overall energy scale and also the on-site repul-
sion. The relative magnitude of the extended repulsion is set
by some factor ��1. Beyond one lattice spacing, the poten-
tial decreases exponentially with decay rate �. For �→� we
obtain the Hubbard model with on-site interaction only,
while for small � the interaction extends over many lattice
sites.

We also consider the above potential but truncated at the
fourth neighbor. This tests robustness of our conclusions to
modifications where the interactions have finite but still
somewhat extended range, as may be preferable in numerical
studies of such electronic models.

1. Weak coupling phase diagram for potential [Eq. (32)]

The extended repulsion, Eq. �32�, is in Fourier space,

VQ = U�1 − � +
� sinh���

cosh��� − cos�Q�� . �33�

For given model parameters, we use Eqs. �11�–�18� to set
initial conditions. We follow the RG flows and identify the
phases as described above, thus mapping out the “weak cou-
pling phase diagram.” Here and in the rest of the paper, we
take �=0.5. This is loosely motivated by the recent ab initio

Λab
Ρ

Λab
Σ

w12Ρ

w12Σ
�12

�10

�8

�6

�4
Log�Coupling�

l

FIG. 2. �Color online� Example of RG flows in the C2S2 phase.
The model potential is Eq. �32� with �=1 /2, �=2 /5; the band
parameter is t2 / t1=0.9. We choose logarithm of the couplings to be
the y axis and RG “time” � to be the x-axis. We see that w12


/	 flow
toward 0 rapidly �irrelevant couplings�; �ab


 saturate very fast
�strictly marginal couplings�; while �ab

	 flow to 0 slowly �marginally
irrelevant�. More generally, if we fix these � and � values, for
t2 / t1�0.99 the flows are similar to those shown here and the phase
is C2S2.

���
Ρ

���
Σ

Λ��
Σ Λ��

Σ

������

������

�����

�����

���	
��


l

FIG. 3. �Color online� Example of RG flows of selected cou-
plings in the C1S0 phase. The model is the same as in Fig. 2, but
with t2 / t1=1.05. We see that the selected couplings diverge after
some time. For example, once the �11

	 and �22
	 become negative

while w12

 and w12

	 remain positive, the RG Eqs. �23�–�30� drive the
�11

	 and �22
	 to −� and in turn w12


 and w12
	 to +�, and then all

couplings diverge. More generally, if we fix �=2 /5, for t2 / t1

�0.99 the flows are similar to those shown here and we call this
C1S0 phase. Varying �, we obtain the phase diagram Fig. 4.
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calculation25 for the �-�ET�2Cu2�CN�3 which gives the ratio
of the nearest-neighbor repulsion V1�V�
x−x�
=1� to the
on-site Hubbard U as V1 /U�0.43, while in our model
V1 /U=�e−�. The corresponding phase diagram showing
stable C2S2 region is in Fig. 4.

We see that the C2S2 region becomes wider upon increas-
ing the interaction range 1 /�. We can understand this quali-
tatively as follows. For fixed band parameters, when �→0
the values of VQ for all nonzero Q approach U�1−��, while
VQ=0�2�U /� continues to increase. The corresponding con-
tribution to 

 is

�

 =
VQ=0

2�
� 1

v1
+

1

v2
−

4

v1 + v2
� =

VQ=0

2�
� �v1 − v2�2

v1v2�v1 + v2�� ,

�34�

which is positive for any v1�v2 and grows with increasing
VQ=0. Note also from Eqs. �11�–�18� that the VQ=0 enters only
in the �ab


 couplings. Large bare value of 

 makes the w12

/	

flows strongly irrelevant. Their effect on the �ab
	 flows is

rapidly decreasing and expires. The �ab
	 couplings start repul-

sive and stay so and eventually flow to zero via marginal
flows. This argument is strictly true in the small � limit,
while for finite � the interplay of different flows is more
complex and requires numerical study as done in Fig. 4.

2. Weak coupling phase diagram for potential [Eq. (32)]
truncated at the fourth neighbor

Here, we truncate the interaction at the fourth neighbor, so
the Fourier transform is,

VQ = U�1 + 2��
n=1

4

e−n� cos�nQ�� .

The phase diagram in the weak coupling RG approach is
shown in Fig. 5. We see that unlike the case without the
truncation, the C1S0 phase opens again as �→0. Since we
only include up to the fourth neighbor interaction, VQ=0 does
not dominate over VQ�0 even in the �→0 limit. For �=0.5
and �=0, there is significant structure in VQ including sign
changes as a function of Q, which can make bare spin cou-
plings �aa

	 �V2kFa
to be marginally relevant. Nevertheless,

for intermediate � there is still a wide window of the C2S2
phase.

III. WEAK TO INTERMEDIATE COUPLING: PHASES
OUT OF C2S2 UPON INCREASING INTERACTION

A. Harmonic description of the C2S2 phase

Let us begin with a harmonic description of the C2S2
metal. Technical steps and many details of the bosonization
essentially follow Ref. 14 and references therein. We write

cPa� = �a�ei��a�+P�a��, �35�

where � and � are canonically conjugate boson fields and �
are Klein factors.

We define “charge” and “spin” boson fields,

�a
/	 =
1
�2

��a↑ � �a↓� , �36�

and “even” and “odd” flavor combinations,

��� =
1
�2

��1� � �2�� , �37�

with �=
 ,	. Similar definitions hold for the � fields.
We can now bosonize all four-fermion interactions �Eqs.

�7�–�10��. First consider the spin sector. The Cab
	 terms give

velocity renormalizations, while the �ab
	 terms are written out

in Sec. IVA of Ref. 14 and are not repeated here. We assume

0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
C2S2 Boundary�

t2/t1

C2S2
0.57

C1S0

0.5

FIG. 4. �Color online� Stabilization of the C2S2 metal by ex-
tended interactions. The model potential is Eq. �32� with �=0.5.
The noninteracting problem has one band for t2 / t1�0.5 and two
bands for t2 / t1�0.5, cf. Figure 1, and we focus on the latter region.
The limit �→� corresponds to the Hubbard model with on-site
repulsion only, and the C2S2 phase is stable only over a narrow
window t2 / t1� �0.5¯0.57� �Refs. 18 and 23�. The C2S2 region
becomes progressively wider as we increase the interaction range
1 /�.
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FIG. 5. �Color online� Same as Fig. 4 but for the potential Eq.
�32� truncated at the fourth neighbor.
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that the �ab
	 are marginally irrelevant in the C2S2 phase. The

fixed-point Lagrangian has effectively decoupled boson
fields �1	 and �2	 with Luttinger parameters g1	=g2	=1,
dictated by SU�2� spin rotation invariance.

The Lagrangian in the charge sector is

L
 =
1

2�
��x�

T · A · �x� + �x�
T · B · �x�� +

i

�
�x�

T · ��� ,

�38�

where we defined �T= ��
+ ,�
−� and �T= ��
+ ,�
−�. Matrix
elements of A and B are

A11 = v̄ +
�11


 + �22

 + 2�12




2�
+

C11

 + C22


 + 2C12



2�
= v̄ +

4VQ=0

�

−
V2kF1

4�
−

V2kF2

4�
−

V�/2

2�
−

VkF1−kF2

2�
−

U

2�
, �39�

A22 = v̄ +
�11


 + �22

 − 2�12




2�
+

C11

 + C22


 − 2C12



2�
= v̄ −

V2kF1

4�

−
V2kF2

4�
+

V�/2

2�
+

VkF1−kF2

2�
−

U

2�
, �40�

A12 = A21 = vr +
�11


 − �22



2�
+

C11

 − C22




2�
= vr −

V2kF1

4�
+

V2kF2

4�
,

�41�

B11 = v̄ −
�11


 + �22

 + 2�12




2�
+

C11

 + C22


 + 2C12



2�
= v̄ +

V2kF1

4�

+
V2kF2

4�
+

V�/2

2�
−

VkF1−kF2

2�
−

U

2�
, �42�

B22 = v̄ −
�11


 + �22

 − 2�12




2�
+

C11

 + C22


 − 2C12



2�
= v̄ +

V2kF1

4�

+
V2kF2

4�
−

V�/2

2�
+

VkF1−kF2

2�
−

U

2�
, �43�

B12 = B21 = vr −
�11


 − �22



2�
+

C11

 − C22




2�
= vr +

V2kF1

4�
−

V2kF2

4�
,

�44�

where

v̄ �
v1 + v2

2
, vr �

v1 − v2

2
. �45�

The couplings �ab

 of the right-left mixing interactions HRL




enter with opposite signs in A and B and directly affect
Luttinger parameters, while the couplings Cab


 of Hchiral

 enter

with the same sign and give velocity renormalizations.
From the final expressions in terms of VQ, we see that the

Q=0 component enters only in A11. This can be understood
by considering the Q=0 part of the interaction,24

�
x,x�

V�x − x��n�x�n�x�� → VQ=0�
x

�
�x��2, �46�

where 
�x�=2�x�
+ /� is the coarse-grained electron density.
Note also that the −U / �2�� in the diagonal matrix ele-

ments is due to our more careful treatment of the on-site
repulsion, which we first write as Un↑�x�n↓�x� and then
bosonize. We obtain harmonic description of the C2S2 phase
by combining the spin and charge sectors. The latter two-
mode system L
 has nontrivial Luttinger parameters, which
can be determined from the matrices A and B �cf. Appendix�.
The fixed-point matrix elements will differ somewhat from
the bare values above, but we ignore this in our crude analy-
sis of the intermediate coupling regime.

To complete the bosonization of the four-fermion interac-
tions, Eqs. �7�–�10�, the w12


/	 terms give14,27

W � �w12

 JR12JL12 − w12

	 J�R12 · J�L12� + H.c. �47�

=cos�2�
−��4w12

 �cos�2�	−� − �̂ cos�2�	−��

− w12
	 �cos�2�	−� + �̂ cos�2�	−� + 2�̂ cos�2�	+

��� , �48�

where �̂=�1↑�1↓�2↑�2↓. We see that W couples the charge
and spin sectors. In the C2S2 theory described above, its
scaling dimension is

��W� = ��cos�2�
−�� + 1, �49�

where ��cos�2�
−�� is evaluated in the Lagrangian L
, while
the contribution 1 comes from the spin sector. For the C2S2
theory to be consistent, the W term must be irrelevant,
��W��2. Once the W renormalizes to zero, the charge and
spin sectors decouple. We thus have precise parallel with the
weak coupling analysis of the C2S2 fixed point in Sec. II.

On the other hand, if ��W��2, the W term becomes rel-
evant and the C2S2 state is unstable. In this case, �
− will get
pinned and also the spin sector will become gapped. Only the
“
+” mode remains gapless and the system is some C1S0
conducting phase.

B. Mott insulator driven by umklapp interaction:
Intermediate coupling procedure out of the C2S2

The weak coupling analysis in Sec. II misses the possibil-
ity of gapping out the overall charge mode �
+ since there are
no four-fermion umklapp terms allowed in the two-band sys-
tem. However, the half-filled electronic system does become
a Mott insulator for sufficiently strong repulsion. In the the-
oretical description, this is achieved by an eight-fermion um-
klapp term,14

H8 = v8�cR1↑
† cR1↓

† cR2↑
† cR2↓

† cL1↑cL1↓cL2↑cL2↓ + H.c.�

= 2v8 cos�4�
+� . �50�

At weak coupling, this term has scaling dimension ��H8�
=4 and is strongly irrelevant. However, from Eq. �46� we see
that overall repulsive interaction stiffens the �
+ mode and
lowers the scaling dimension of H8. For sufficiently strong
repulsion, ��H8� drops below 2 and the umklapp becomes
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relevant; �
+ gets pinned and we obtain a Mott insulator.
Our intermediate coupling procedure is as follows. Using

the harmonic theory of the C2S2 phase, we calculate
the scaling dimensions ��W�, Eq. �49�, and ��H8�
=��cos�4�
+

�� from the Lagrangian L
, Eq. �38�. Details are
described in Appendix and calculations are done numerically
in the end.

If both ��W� and ��H8� are larger than 2, the C2S2 metal
is stable. As interactions increase, eventually either W or H8
becomes relevant. In general, there are two cases.

�1� If H8 becomes relevant first, we pin �
+ and enter
C1S2 Mott insulator. To be more precise, we can further
qualify the label as “C1�
−�S2”; the remaining “charge”
mode “
−” represents local current loop fluctuations and
does not conduct. This is the spin liquid phase called spin
Bose-metal in Ref. 14 and described in detail there. Explor-
ing conditions for finding such phase in electronic models is
our main goal here.

�2� On the other hand, if the W term becomes relevant
first, we enter C1S0 conducting state with a spin gap �more
precisely, “C1�
+�S0”�.

Some reservations are in order. First, we use bare values
of the couplings in the A and B matrices, which is not accu-
rate since the couplings experience initial flows, cf. Sec.
III B Second, we consider only instabilities driven by
changes in the harmonic L
 theory as they translate to scal-
ing dimensions of the H8 and W terms, i.e., we effectively
treat the latter as small. We also assume that the spin sector is
near the fixed point with all �ab

	 marginally irrelevant and
small. We will address these reservations after presenting
results of the above procedure. Keeping these remarks in
mind, we now describe how we analyze phases out of the
C1�
−�S2 and C1�
+�S0 in the same procedure.

1. Instability out of C1[�−]S2 driven by spin-charge coupling W

In the present analysis focusing on the 
+ and 
− fields,
we can also crudely estimate the extent of the C1S2 or C1S0
phases once either happens out of the C2S2. Suppose the
umklapp H8 is relevant first and we are in the C1S2 phase.
We still need to remember the W term since it can become
relevant if we continue increasing the interaction strength. To
estimate the scaling dimension of the W term, we assume
now that the �
+ field is massive and integrate out �
+ and
�
+. Mathematically this amounts to sending A11→�, and
we obtain

��W;�
+ is pinned� = � A22B11

B11B22 − B12
2 �1/2

+ 1. �51�

This assumption is approximate but reasonable, since once
the parameters are such that the system is in the C1S2 phase,
the relevant H8 will grow and quickly stiffen the A11 in posi-
tive feedback loop.

The C1S2 phase is stable if ��W��2, and this analysis is
similar to the stability analysis of the SBM in Ref. 14. If
��W� drops below 2, the W term becomes relevant and the
�
− field will be pinned, together with gapping out the spin
sector, cf. Eq. �48�. The final result is some “C0S0” phase,
whose precise character depends on the details of the cou-

plings w12

/	. This is studied in Sec. IVB of Ref. 14. For the

present repulsive electron model, we have w12

 ,w12

	 �0, so
the resulting C0S0 is likely a period-2 valence bond solid
�VBS�.14 This connects to dimerized phase in the J1−J2 spin
chain appropriate in the strong interaction limit of the elec-
tron system.

2. Instability out of C1[�+]S0 driven by umklapp H8

Suppose now the W interaction becomes relevant first.
From Eq. �48�, it is natural that �
− is pinned, the spin sector
gets gapped, and we are in C1S0 phase. Here we postulate
mass for �
− �essentially sending B22→�� and calculate the
effective scaling dimension of the umklapp term,

��H8;�
− is pinned� = 4� B11A22

A11A22 − A12
2 �1/2

. �52�

If ��H8��2, the C1S0 is stable. Once ��H8� drops below 2,
the overall charge mode �
+ is pinned and we obtain fully
gapped Mott insulator C0S0, which is likely the same
period-2 VBS discussed earlier.

C. Numerical results

We consider the same models with extended density-
density interactions as in the weak coupling analysis in Sec.
II E, parking ourselves initially in the C2S2 phase in Figs. 4
and 5. From the preceding discussion, we can obtain two
phases out of the C2S2 upon increasing interaction
strength—either C1�
+�S0 or C1�
−�S2. To visualize the re-
sults, we imagine adding the overall interaction strength V as
the z-axis to Figs. 4 and 5. We then project down which
phase happens first for each such vertical line out of C2S2.
Calculations are done numerically and the results are shown
in Figs. 6 and 9. In Fig. 7 we take a cut through Fig. 6 at
�=0.4 and show details of the phase diagram in the t2 / t1
−V plane.

0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8�

t2/t1

C2S2 C1S2(SBM)

C2S2 C1S0

0.5

FIG. 6. �Color online� Projection of phases obtained out of the
C2S2 of Fig. 4 as we increase overall repulsion strength V, which
we imagine to be the z axis perpendicular to the page �Fig. 7 gives
one cut at �=0.4 with such V axis shown explicitly�. The results are
obtained in the intermediate coupling procedure as explained in the
text. White region is C1S0 at weak coupling, cf. Fig. 4, and is not
considered here.
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1. Intermediate coupling phase diagram for model with potential
[Eq. (32)]

Figure 6 shows results for the model potential Eq. �32�.
We can see that in two regimes ��1.2 and ��0.4 we exit
from the C2S2 into the C1S2. The two limits can be under-
stood analytically.

In the large � case, we can replace all VQ by simply U.
The matrices A and B defined in Eq. �39�–�44� become

A = �v̄ +
2U

�
vr

vr v̄
�, B = � v̄ vr

vr v̄
� . �53�

We see that U only contributes to A11. This monotonically
“stiffens” the �
+ �lowering ��H8�� but “softens” the �
−
�increasing ��W��. Therefore we only expect the C1S2 phase
out of the C2S2 as found in the numerical calculations.

On the other hand, for small � we can see from Eq. �33�
that VQ=0 will dominate over VQ�0. Keeping only VQ=0, the
matrices A and B become

A � �v̄ +
4VQ=0

�
vr

vr v̄
�, B � � v̄ vr

vr v̄
� . �54�

Thus the small � case has similar mathematical structure to
the large � case. The physical difference is that here the
transition to the C1S2 is driven by the VQ=0 instead of the
on-site Hubbard U. Note also that since VQ=0�2�U /� for
��1, the transition requires only small values of U, which is
why we can ignore all VQ�0 compared to the band velocities.

Now we consider a cut at �=0.4 to see more details in the
t2 / t1−V plane. The results are shown in Fig. 7. Compared
with the two limits ��1 and ��1 above, all possibilities
that we discussed out of the C2S2 are realized here. The
C1S0 phase appears for t2 / t1�0.65 for some quantitative
reasons. Various VQ are all of the same order, unlike the �
�1 case. At the same time, they have some nontrivial
Q-dependence, unlike the ��1 case, which is somehow
enough to make the W term become relevant and preempt the
umklapp term. Note that for small interactions the scaling
dimension of the W term can be obtained from the weak
coupling RG equations for the w12


/	 in Sec. II B by setting all
�ab

	 =0 �since we ignore the spin sector in the present proce-
dure�. Thus, ��W�=2+

, where 

 is defined in Eq. �31�.
Since 

 can only decrease under the weak coupling RG and
the shaded C2S2 region in Fig. 4 was found to be stable, we
expect ��W� here to increase with V for small V, in agree-
ment with numerical calculations. However, we find that
��W� eventually starts to decrease with increasing V and can
become relevant before the umklapp. This is a quantitative
matter and comes from putting together all interactions HRL




and Hchiral

 , Eqs. �7�–�9�, in the intermediate coupling proce-

dure. Such numerical calculations give us that the C2S2 can
exit into the C1S0 phase. For larger t2 / t1�0.65 in Fig. 7, we
obtain the sought for C1S2 spin liquid phase.

This concludes the presentation of formal results within
the particular procedure for intermediate scale analysis. Let
us now think how to combine the weak and intermediate
coupling approaches more realistically and see where our
results are more robust.

First of all, in the weak coupling analysis the C2S2 phase
is unstable beyond the shaded regions in Figs. 4 and 5. How-
ever, this is lost in the specific intermediate coupling proce-
dure, which, when applied for small coupling, would give
C2S2 essentially everywhere. For example, in Fig. 7 we see
monotonic growth of the C2S2 phase with t2 / t1 past the
point where the weak coupling analysis predicts instability.
The reason for this discrepancy is the complete neglect of the
spin sector in the formal intermediate scale procedure. In-
deed, in the weak coupling analysis, the instabilities manifest
dramatically once one of the �aa

	 becomes negative, causing
runaway flows. This can happen even when the bare �aa

	 are
repulsive because they are renormalized downwards and can
be driven negative by the w12


/	 contributions in Eqs. �26� and
�27�, where we assume w12


 w12
	 �0. Also, the �	 couplings

feed back into the flow of w12

/	, so the RG flow behavior is

even more complex. So far we have dealt with this inad-
equacy of the intermediate scale procedure by simply cutting

0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

�= 0.4U/t1

t2/t1

C1S0

C0S0 C1S2(SBM)

C0S0

C2S2

FIG. 7. �Color online� Intermediate coupling analysis of the
model with potential Eq. �32� for �=0.5 and �=0.4. Here the hori-
zontal range is equal to the extent of the C2S2 phase in the weak
coupling analysis from Fig. 4. We start in the C2S2 at small U. The
boundary where the charge-spin coupling term W becomes relevant
first is indicated with blue triangles and the system goes into the
C1S0; the next stage where the C1S0 in turn becomes unstable and
the system goes into the C0S0 is marked with green circles. The
boundary where the umklapp term H8 becomes relevant first is in-
dicated with red squares and the system goes into the C1S2, which
is the SBM phase of Ref. 14; upon further increase in the interac-
tion strength the C1S2 eventually becomes unstable and goes to the
C0S0 at locations marked with black diamonds. Note that the dis-
continuity shown with dotted vertical line is not meaningful and is
due to our crude analysis performed separately out of the C1S0 and
C1S2; in either case, the final C0S0 is likely the same phase. Also
note that the C1 mode content is distinct in the C1�
+�S0 �conduct-
ing� and C1�
−�S2 �insulating� cases and any transition between
them is first order. The C2S2 to C1S2 transition is
Kosterlitz-Thouless-like.
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it at the C2S2 boundaries determined from the weak cou-
pling analysis. More realistically, we expect the extent of the
C2S2 phase to peak somewhere in the middle of the range
shown in Fig. 7 and decrease toward the right boundary.
Similar considerations apply to the C1S2 phase, which is
likely confined within the same t2 / t1 range as the C2S2.
Therefore, the t2 / t1−U / t1 phase diagram should be more like
Fig. 8.

We can also discuss our earlier reservation about using
bare values of the couplings instead of some renormalized
values. Thinking about some RG treatment, we expect that
crude patterns of how various couplings affect each other are
likely similar at intermediate and weak couplings. Now if we
formally take the flow equations from Sec. II B, the outcome
does not depend on the initial interaction scale, so we would
conclude the C2S2 phase throughout the shaded region in
Figs. 4. The weak coupling flow equations miss velocity
renormalizations due to chiral interactions, but these are not
expected to flow strongly and are treated reasonably in the
intermediate coupling analysis. The fact that the couplings
are now finite and comparable with bare band energies is
also treated reasonably at intermediate coupling due to the
power of bosonization, so the outlined forging of weak and
intermediate scales seems appropriate. Finally, the umklapp
term that is missing in the weak coupling approach will feed
into stiffening of �
+ only, which is good for the first insta-
bility out of the C2S2 to be into the C1S2 spin liquid.

We think that our conclusions are more robust for small �
where the extent of the C2S2 phase is larger and also the
longer-ranged potential is feeding precisely into stiffening
the overall charge field �
+, which is good for going to the

C1S2 phase. On the other hand, results at medium to large �
are likely less reliable, with different scenarios depending on
quantitative issues.

2. Intermediate coupling phase diagram for model with potential
[Eq. (32)] truncated at the fourth neighbor

Figure 9 shows results of the intermediate coupling analy-
sis for the model with interactions truncated at the fourth
neighbor, cf. Sec. II E 2. We have a rather similar story to
Fig. 6, except that the initial C2S2 region is bounded. Large
part of the C2S2 phase exits into the C1S2 spin liquid upon
increasing interactions, and our results are probably more
robust near ��0.2–0.3 where the C2S2 has the largest ex-
tent along the t2 / t1 axis.

IV. SUMMARY AND DISCUSSION

To summarize, in this paper we consider electronic mod-
els for realizing spin Bose-metal �spin liquid� phase on the
two-leg triangular strip found in Ref. 14 in spin-1/2 model
with ring exchanges. We identify the SBM with the C1S2
Mott insulator of electrons.

In Sec. II, we start with a two-band electron system,
which is C2S2. Instead of considering only the on-site
Hubbard-type repulsion,18,20–22,26,28,29 we study generally
longer-ranged density-density repulsion. This is motivated in
part by the expectation that real Coulomb interaction is not
screened in Mott insulator materials, so further neighbor re-
pulsion can be significant, as brought up by recent ab initio
work25 for the spin liquid material �-�ET�2Cu2�CN�3. Using
weak coupling RG analysis for the zigzag chain
problem,17,18,23,27 we find that such extended interactions
open much wider window of the C2S2 metal compared with
the Hubbard model. The main results are shown in Figs. 4
and 5. In the first figure, we have essentially an independent
control over the Q=0 part of the potential by allowing it to
extend to far neighbors, and we identify the dominance of
VQ=0 as the main stabilizing force for the metal. In the sec-
ond figure, we truncate interactions at the fourth neighbor to

����

����

��������

����

����
����

���

�

���

���
�

�
�
��
�

FIG. 8. �Color online� Schematic merging of the weak and in-
termediate coupling results in the model regimes like in Fig. 7 in
the whole range with t2 / t1�0.5. In weak coupling, the C2S2 phase
is unstable beyond the shaded region in Fig. 4. However, due to the
crudeness of our intermediate coupling procedure, Fig. 7 shows
monotonic growth of the C2S2 phase with t2 / t1 past this instability.
This discrepancy arises because our intermediate coupling proce-
dure completely ignores the spin sector. More realistically, we ex-
pect the C2S2 phase to peak somewhere in the middle of the range
shown in Fig. 7 and be bounded by the C1S0 for larger t2 / t1. Simi-
lar considerations apply to the C1S2 phase, which is bounded by the
C0S0.
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FIG. 9. �Color online� Same as Fig. 6 but for the model with
interactions �Eq. �32�� truncated at the fourth neighbor and starting
out of the C2S2 of Fig. 5.
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check the robustness of our conclusions, in view that such
models may be easier to explore using numerical DMRG.
Our detailed quasi-1D considerations agree with the intuition
that in real metals electronic pairing instabilities are sup-
pressed by the long-ranged piece of the Coulomb interaction.
Such widening of the C2S2 region by extending the model
interaction range is warranted if we want to bring the elec-
tronic ladder system closer to realistic situations in the 2D
candidate spin liquid materials.

In Sec. III, we begin with stable C2S2 metal at weak
coupling and use bosonization to extend the analysis to in-
termediate coupling by gradually increasing the overall re-
pulsion strength. Within effective bosonic theory, we identify
potential instabilities of the C2S2 phase to spin-charge inter-
action W �Eq. �48�� and umklapp interaction H8 �Eq. �50��.
The W can drive the system into C1�
+�S0 phase with spin
gap but still conducting along the chain, while the umklapp
H8 can produce C1�
−�S2 Mott insulator with three gapless
modes, which is the desired SBM phase. We calculate the
scaling dimensions of the W and H8 terms in the harmonic
theory of the C2S2 metal using bare couplings in the charge
sector and assuming stability in the spin sector—this consti-
tutes our naive intermediate coupling procedure. The calcu-
lation of scaling dimensions is described in Appendix and is
done numerically in the end.

We consider two cases depending on which of the terms
W or H8 becomes relevant first and apply similar intermedi-
ate coupling approach inside the resulting phase. Assuming
strong field pinning by the already relevant term, we calcu-
late the scaling dimension of the remaining term and esti-
mate when it eventually drives the system into fully gapped
C0S0 paramagnet �which is likely connected to the dimer-
ized phase of the J1−J2 Heisenberg model at strong cou-
pling�. With the help of such admittedly crude analysis, we
can map out the phase diagram in weak to intermediate cou-
pling regime as illustrated in schematic Fig. 8 �based on
more naive Fig. 7�. Figures 6 and 9 summarize our results
and show where the C2S2 metal goes to the C1S2 �SBM spin
liquid� upon increasing overall repulsion strength. We con-
clude that the C1S2 phase is quite natural out of the wider
C2S2 metallic region, in particular when driven by extended
repulsive interactions. It would be very interesting to con-
front our theoretical predictions with numerical DMRG stud-
ies of such electronic models with extended repulsion.

So far, we have approached the intermediate coupling
Mott insulator from the weak coupling metallic side. One
could try to attack the same problem starting from the strong
coupling limit deep in the Mott insulator where Heisenberg
spin-1/2 model is appropriate. As one nears the metallic
phase, it becomes important to include multiple spin ex-
changes in the effective spin Hamiltonian to better capture
charge fluctuations in the underlying electron system.7,15,16,30

This is the motivation behind Ref. 14 studying J1−J2 chain
with additional four-spin ring exchanges. The concept study
Ref. 14 allowed arbitrary variation in the ring coupling com-
pared with the Heisenberg couplings. However, coming from
an electronic model these do not vary independently and
more exchange terms are also generated. It would be inter-
esting to pursue such approach systematically studying effec-
tive spin models with multispin exchanges for realistic elec-

tronic models to see if they harbor the SBM phase. We do
not make such attempts here, but only give few simple ob-
servations on how the derivation of the spin model is modi-
fied in the presence of extended repulsion.

First of all, for the two spin exchanges, the familiar Hub-
bard model expression Jrr�=4trr�

2 /U is modified to Jrr�
=4trr�

2 / �V0−Vr−r��. The energy denominator is not simply the
on-site U=V0 but also includes interaction potential between
the two sites r and r�. For example, Ref. 25 estimates
V1 /V0�0.43 for the �-�ET�2Cu2�CN�3 spin liquid material,
and this would significantly affect values of the exchange
constants. Energy denominators for all virtual processes are
similarly affected and take a form of a charging energy for
the deviations from the background. Multispin exchange am-
plitudes are given by a product of electron tunneling ampli-
tudes for a given virtual path divided by a product of such
charging energies in intermediate states along the path. Thus,
the multispin exchanges may in fact be relatively more im-
portant in systems with extended interactions.

As an extreme example, imagine a very slow decrease in
V�r−r�� up to some distance R �and perhaps a faster drop
thereafter�. Then all exchange loops up to such radius R will
have large amplitudes. The multispin exchanges encode the
underlying kinetic energy of electrons, and our intuition is
that this would like to retain some itinerancy in the spin
degrees of freedom even when the charges are localized.
From such strong to intermediate coupling perspective, it
appears that extended interactions would tend to stabilize the
SBM spin liquid near the insulator-metal transition, similar
to our conclusion from the weak to intermediate coupling
study in the quasi-1D models in this paper. It would be in-
teresting to pursue such considerations more carefully and in
realistic electronic models. We hope that our work will fur-
ther stimulate numerical studies of such models on ladders
and in two dimensions.
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APPENDIX: DERIVATION OF �[cos(4��+)] AND
�[cos(2��−)] IN C2S2 PHASE

Equation �38� gives quadratic Lagrangian for the charge
sector. First, we redefine the fields which still satisfy the
same commutation relations,

� = S · �1, � = S · �1. �A1�

Here S is an orthogonal 2�2 matrix diagonalizing the ma-
trix A,

ST · A · S = �A1 0

0 A2
� � AD. �A2�

The Lagrangian becomes
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L
 =
1

2�
��x�1

T · AD · �x�1 + �x�1
T · ST · B · S · �x�1�

+
i

�
�x�1

T · ���1. �A3�

Define another set of conjugate fields,

�1 =
1

�AD

· �2, �1 = �AD · �2. �A4�

We obtain

L
 =
1

2�
��x�2

T · �x�2 + �x�2
T · B� · �x�2� +

i

�
�x�2

T · ���2,

�A5�

where

B� � �AD · ST · B · S · �AD. �A6�

We use the same trick to diagonalize matrix B�,

�2 = R · �3, �2 = R · �3, �A7�

where R is an orthogonal matrix which satisfies,

RT · B� · R = �B1� 0

0 B2�
� � BD� . �A8�

The Lagrangian becomes,

L
 =
1

2�
��x�3

T · �x�3 + �x�3
T · BD� · �x�3� +

i

�
�x�3

T · ���3.

�A9�

Now we can calculate the scaling dimension of cos�4�
+�
and cos�2�
−� from Eq. �A9� through relations

� = S ·
1

�AD

· R · �3, �A10�

� = S · �AD · R · �3, �A11�

and scaling dimensions of the final fields,

��ei�3� =
�BD�

4
, ��ei�3� =

1

4�BD�
, �A12�

where the right hand sides mean corresponding diagonal ma-
trix elements. Therefore, we find general form for the dimen-
sions we are interested in

��cos�4�
+�� = 4�B1��S11R11

�A1

+
S12R21

�A2
�2

+ 4�B2��S11R12

�A1

+
S12R22

�A2
�2

, �A13�

��cos�2�
−�� =
��A1S21R11 + �A2S22R21�2

�B1�

+
��A1S21R12 + �A2S22R22�2

�B2�
, �A14�

where Sab and Rab are matrix elements of S and R.
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